
  

 
ABSTRACT 

 

In this advanced world the usage of cutting-edge technologies 

in daily life increase day by day, whereby, acoustics noise also 

increases thereby affecting our life. So, an urgent requirement 

is to reduce this noise and improve the quality of life.  Several 

Active noise control (ANC) systems using Artificial Neural 

Networks (ANN) are present but in limited performance. This 

paper is focused to develop an adaptive all-pass filtered x least 

square algorithm for a single-channel narrowband active noise 

control system using Nonlinear autoregressive with external 

(exogenous) input (NARX). The novelty of this research is 

that the All-pass filtered x LMS (APFxLMS) algorithm is 

introduced to the system without the need to identify the 

secondary path. Here the first-order all-pass filters with a 

single parameter are used to improve the convergence of the 

LMS algorithm. The results show that the proposed method 

performance is better in terms of regression and mean square 

error and on comparison with the recent method through 

numerical simulation shows that the proposed method is 

simpler to implement, and it achieves fast convergence speed. 

 

Key words: Adaptive system, Active noise control (ANC), 

All-Pass Filtered x Least Means Square Algorithm 

(APFxLMS) and Artificial Neural Network (ANN), Nonlinear 

Autoregressive with External (Exogenous) Input (NARX). 

 

1. INTRODUCTION 

 

ANC framework is a system to reduce acoustic noise using a 

signal which is exactly in opposite phase of the unwanted noise 

signal but same in amplitude [1,2]. There are many kinds of 

adaptive ANC systems developed in this modern age because 

of the exponential increment of noise pollution and 

ineffectiveness of passive procedures for noise attenuation 

[1–6]. This procedure has been effectively connected to 

warming, ventilating, and cooling frameworks [4,5], exhaust 

and engine noise [4,6], headsets [4,6], and planes [4]. The 

most popular ANC system filtered x least mean square 

(FxLMS) algorithm using linear finite impulse response (FIR) 

filter [2] with secondary path identification, work well in some 

cases but performs poorly and even fails to work for nonlinear 

 

 
 

cases [7]. Several ANC systems are developed in recent era 

which does not required secondary path identification, also 

perform poorly in some cases. Some of researcher used fuzzy 

logic methodology to reduces the noise [3], fuzzy logic also 

used in numerous research work for example it can be used in 

voltage stability [25] or risk management system [26] etc.  To 

solve these nonlinear cases in ANC system, several nonlinear 

structures and algorithms are proposed over past fifteen years 

[8-20]. Most widely used ANN system is functional link 

artificial neural network (FLANN) filter. FLANN filter is used 

in many cases, such as feedforward ANC, feedback ANC, 

single channel ANC, multichannel ANC. There are other 

different kinds of nonlinear ANN system for ANC system such 

as NARX system, Volterra system, bilinear system, etc. 

discussed widely in section 2. However, these systems have 

their limitations and the performance is not accurate and 

sometime fail to work and create computational complexity. 

Therefore, there is an urgent need to develop a robust and 

accurate ANN system for ANC. To simplify the computational 

complexity of APFxLMS algorithms [12] without secondary 

path identification is used to update the controller and 

corrective filter weights. This paper is focused to develop a 

robust NARX system using APFxLMS algorithm to reduce the 

inherent assurance between nonlinear coefficients and 

improve the performances of FLANN and its other modified 

versions. ANN widely used in many different areas such as 

legal procedure research work [27] and forecasting data file 

[28] also. This paper is organized by the introduction of 

historical development of ANN systems in Section 2. The 

proposed algorithm and the methodology are presented in 

section 3. In section 4, numerical simulation results are 

discussed, with the conclusion in Section 5. 

 

2. HISTORICAL DEVELOPMENT 

 

Use Snyder and Tanaka (1995) [8] proposed a versatile 

algorithm which empowers stable adjustment of the neural 

controller while giving the ability to keep up causality inside 

the control plan utilizing essential speculation of the linear 

filtered-x LMS algorithm. The neural network controller was 

demonstrated to have the option to make up for the 

presentation of sounds by the control actuator by creating a 

control signal, obtained from an unadulterated tone reference 

signal, which contains some degree of sounds. Likewise, the 

neural controller supposedly was ready to make up for a 

misshaped reference signal in a way better than that of a linear 
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controller. The fundamental disadvantage concerning the 

utilization of the nonlinear neural network controller was an 

absence of consistency throughout and its presentation. 

Pavisic et. al. (1996) [9] built up a neural active noise 

controller which performs better compared to existing 

systems. They utilized a dynamic intermittent neural network 

to show the conduct of a current controller that uses a Least 

Mean Squares algorithm to limit an error signal. The neural 

controller adapts much better noise-reducing even for cases 

for which the network was not tailored. It also performs well 

with noisy functions and even with pure white noise. Debi 

Prasad Das and Ganapati Panda (2004) [10] proposed a novel 

filtered S least mean square (FSLMS) algorithm-based ANC 

structure, which perform as a nonlinear controller, utilizing the 

FLANN as the essential structure. They improved their 

proposed algorithm with a fast implementation scheme. The 

proposed fast FSLMS based nonlinear ANC is better than 

other proposed algorithms both regarding the steady state 

mean square error and computational complexity. Krukowicz 

(2010) [11] introduced an active noise control algorithm 

dependent on a neural network. It was based on a nonlinear 

input-output framework identification model with a nonlinear 

primary path, utilizing the NARMAX framework 

identification model. In various convenient applications, the 

acoustic noise delivered from dynamical structures is 

nonlinear and deterministic or stochastic, concealed, and 

non-Gaussian. It has been observed that the primary 

frameworks used to control such noise show degradation in 

execution. Moreover, the actuators of ANC framework have a 

nonminimum phase response. A straight controller under such 

conditions cannot demonstrate the opposite of the actuator and 

yields poor execution. In numerous applications, the acoustic 

noise produced from dynamical frameworks is nonlinear and 

deterministic or stochastic, hued, and non-Gaussian. It has 

been accounted for that the linear procedures used to control 

such noise display errors in execution. Also, the actuators of 

ANC framework throughout have a nonminimum-stage 

reaction. A linear controller under such circumstances cannot 

show the reverse of the actuator, and thus yields erroneous 

results. To maintain a strategic distance from this approach 

there are some new research which are now being discussed. 

 

Tsuyama and Maeda (2002) [13] connected a neural network 

for active noise control and utilized the simultaneous 

perturbation method. It was used as a learning standard of the 

neural network which does not require an estimation of the 

secondary-path to decrease a 200Hz sinusoidal wave noise and 

a hand-constrained white noise. Zhou et.al. (2009) [14] 

proposed a novel FLANN based simultaneous perturbation 

stochastic approximation (SPSA) algorithm. The algorithm 

performs as a nonlinear mode-free (MF) controller utilizing 

the FLANN as the fundamental structure and improves noise 

work without utilizing subordinate of the noise work. It also 

does not require any estimation of the secondary path. Zhang 

and Ren (2010) [15] proposed a novel ANC framework 

dependent on neural networks. It performs for nonlinear ANC 

frameworks without the identification of secondary path, by 

presenting virtual primary noises with the assistance of neural 

networks. This approach does not necessitate to constrict the 

noise and does not require the elements information of the 

primary and secondary path model. On comparison with 

old-style noise control performance, it has a simple structure 

and minimal calculation unpredictability. The security of the 

entire framework is demonstrated by the Lyapunov 

hypothesis. Sicuranza and Carini (2011) [16] proposed an 

augmentation of the notable FLANN channel utilizing 

trigonometric developments. It incorporates reasonable 

cross-terms, i.e., results of info tests with various time steps. 

The resulting FLANN channel still has a place with the class of 

filters whose yield depends linearly on the filter coefficients 

and whose nonlinear extensions fulfill the time-step property. 

Behera et.al. (2014) [17] exhibited the partition of tonal and 

the disordered signal is rectified by a versatile waveform union 

technique. In this approach anti-noise of tonal segment is 

delivered by another waveform synthesizer to sustain a 

nonlinear controller. It utilizes FLANN or Volterra channel to 

create the anti-noise of the disordered part of the noise which 

first isolates the disordered signal from the noise mixture. The 

evaluated turbulent signal was utilized in a FLANN/Volterra 

based nonlinear controller. This algorithm utilized a narrow 

band controller and a broadband controller. Subsequently, it is 

called a hybrid controller and it demonstrated more 

noteworthy noise reduction capacity contrasted with numerous 

recently developed algorithms, like, FXLMS, FSLMS, 

mixture ANC. 

Zhao et. al. (2016) [18] proposed CNFSLMS algorithm-based 

FLANN filter, leading to control the tradeoff between 

convergence speed and steady-state mean square error of the 

NFSLMS algorithm. It offers both fast convergence rate and 

low steady-state error, by supplanting the sigmoid capacity 

with the altered Versorial work. The tailored CNFSLMS 

(MCNFSLMS) algorithm with low computational complexity 

is a better choice than others. It includes two new adaptive 

algorithms with various step sizes, CNFSLMS and 

MCNFSLMS algorithms. The MCNFSLMS algorithm is in 

the same class as the CNFSLMS, with less computational 

unpredictability for nonlinear ANC frameworks with the LSP 

and NSP. Le et. al. (2018) [19] proposed a novel bilinear 

FLANN (BFLANN) channel for the nonlinear ANC and 

displayed the dependability of the BFLANN channel and 

generalized FLANN (GFLANN) channels based nonlinear 

ANC. The outcome of the nonlinear ANC framework 

dependent on the BFLANN channel is superior to that of the 

GFLANN and FLANN channels. Li et.al (2018) [20] 

additionally presented the nonlinear adaptive exponential 

functional link artificial neural networks(E-FLANN) channel 

to improve the noise reduction ability of the useful connection 

FLANN in nonlinear active noise control (NANC) framework. 

The proposed algorithm was developed to stay away from 

substantial computational weight at the nonlinear secondary 



  

path (NSP) and poor intermingling result in solid nonlinearity 

frameworks with the channel-diminished askew structure 

(GE-FLANN-CRD) for NANC framework. The outcome of 

the channel has been upgraded by adjusting the reasonable 

cross-terms and versatile exponential factor. In view of the 

askew channel structure, this GE-FLANN-CRD channel was 

effectively incorporated with the channel bank structure. The 

proposed GE-FLANN-CRD channel offers preferable control 

execution over the FLANN, E-FLANN and GFLANN 

channels. Luo et. al. (2018) [21] improved FLANN (IFLANN) 

channel and simplified IFLANN (SIFLANN) channel to 

diminish the computational complexity. Further, the 

filtered-error least mean square (FELMS) algorithm is 

considered in the NANC framework by including a remedial 

channel before trigonometric capacity extension. It offers 

reasonable cross-term defer tests and balance the coefficients 

of nonlinear estimation, IFLANN and SIFLANN channels 

outperforms FLANN, GFLANN, CFLANN and second 

request EMFN channels. Md. Z. Zakaria et al. (2018) [22] 

presented the expansion of the MOODE algorithm to get an 

adequate and adjusting nonlinear auto-regressive moving 

average with exogenous input (NARMAX) model. They 

(2018) [23] also presented the identification of a flexible beam 

system using Nonlinear Autoregressive Moving Average with 

Exogenous input (NARMAX) model. The methodology 

integrates with Multi-Objective Optimization Differential 

Evolution (MOODE) algorithm. Guo et al. (2018) [24] 

developed new control algorithm that resulted in reduction of 

computational complexity. It showed the noise at the canceling 

point might be approximated by the function expansion filters 

when the secondary path is modeled because the second order 

Volterra series. In addition, two new function expansion 

forms, the even mirror Fourier nonlinear filter with a linear 

finite-impulse response section and therefore the Chebyshev 

filter, are explored. They are incorporated to process the 

nonlinearities in the NANC system using the filtered-x least 

mean square and filtered error least mean square algorithm 

structures.  

 

 

3.  APFXLMS USING NARX 

 

The novelty of the proposed APFxLMS system [12] is the use 

of the all-pass filter in place of the estimated secondary path 

transfer function. The all-pass filter is generally an IIR 

(Infinite Impulse Response) filter. Here the magnitude 

response does not change over its entire frequency, but its 

phase response is changeable. For this reason, the all-pass 

filter is known as a phase shifter or equalizer. Now this 

proposed system is realized with the help of the NARX and the 

block diagram is shown in fig. 1. Here the primary-path P(Z) is 

from the noise source to the error microphone, and the 

secondary path S(Z) is from the canceling loudspeaker to the 

error microphone. The NARX controller is used to generate 

the control signal y(n) without the secondary path 

identification. Fig. 2 shows the schematic diagram of the 

NARX controller and the step of the design of this network is 

analysis below. 

 
Fig. 1   Block diagram of APFxLMS using NARX 

 

 
Fig. 2    Schematic diagram of NARX 

 

3.1   Steps of preparing NARX 

 

The steps of preparing the NARX in Neural Network (NN) 

system:  

1. Selection of the system  

2. Arrangement of the system.  

3. Preparing the system 

 

3.2   Selection of the system 

 

First, the system needs to select. To do this, the command to 

open the NN Start the GUI with this command: nnstart. The 

NN fitting tool compartment is shown (Fig. 3). The next step is 

to choose the NARX after selecting the dynamic time series 

and it is shown in Fig. 4 and after that need to provide the input 

and the output datas in NARX. 

 



  

 
Fig. 3    NN fitting tool compartment 

    

 
Fig. 4   Choosing the NARX Control System 

 

3.3  Arrangement of the system 

 

These include a methodical process and evaluation that 

incorporates the inheritance of functions. To build up the 

estimation models, a back-proliferation neural network was 

used in this exploration. A preparation set of 26 esteems; a 

testing set of 7 esteems and an approval set of 7 esteems. Here 

the training set at 70%, Validation at 15% and testing also at 

15% (see Fig. 5) and in Fig. 6 the design of NARX has 

appeared. 

 

 
Fig. 5   Collecting data in NARX 

 
Fig 6    The Architecture of NARX 

 

3.4 Preparing the system 

 

This system starts by including choices of picking a ton of 

affiliation loads for each layer. Every neuron decides its total 

capacity and hence registers its exchange capacity system, 

which relates to its outcome. This process works in forward 

direction only. 

 

A lot of registered results are interpreted in the result layer. For 

each planning part in the result layer, an error is addressed, 

each focus on a deviation of the modified result from the 

perfect result. 

 

Utilizing a learning rule, the errors are brought back through 

the covered-up layer(s) and the association necessities are 

balanced and refreshed accordingly. 

 

Feed-forward algorithm starts from the very beginning once 

more. New result regard registered and the abovementioned 

cycle proceeds until an ideal setting of preliminaries is 

obtained. The outcome of the leadup was to setup loads that 

restricts the mistakes as the result neurons initially produce 

factors that differ fundamentally from the proper results. 

During the process of preparation, both the information 

sources (communicating to point parameters) and yields 

(communicating to the setups) are shown to the system 

typically for numerous cycles (Fig. 7)abbreviation “e.g.,” 

means “for example” (these abbreviations are not italicized). 

 

 
Fig. 7    Preparing of NARX 



  

4. RESULTS AND DISCUSSIONS 

4.1 Performance Test 

 

When the training of multilayer neural networks was 

completed, the network performance was checked to work out 

if any changes got to be made to the training process, the 

specification, or the data sets. First, the training record, tr, 

returned from the training function. Then the value tr.best 

epoch indicated the iteration at which the validation 

performance reached a minimum. The training for this 

network continued for 27 more iterations before the training 

was stopped. This result did not indicate any major problems 

with the training as seen in Figure 8. Similarly, the validation 

and test curves are very similar. If the test curve had increased 

significantly before the validation curve increased, then it's 

possible that some over fitting may need occurred. This is 

however not the case during this model. From the Fig. 8, a 

good validation result has been obtained. 

 

 
Fig. 8   Results of Mean Squared Error (MSE) 

 

4.2 Mean Squared Error and Regression Results 

 

The mean squared error is that the average squared difference 

between outputs and targets. The system is better if the 

estimation is lower and if it is zero that means no error. On the 

other hand, Regression values measure the relationship with 

outputs and targets. If the value of R is nearly 1 or 1 that 

means, there is a very close relationship, if it is 0 then there is 

an irregular relationship. The smaller the value of the 

regression, the smaller the difference between the outputs and 

targets. The regression values are near to zero thus showing 

better execution results shown in table 1. 

 

Table 1      Mean Squared and Regression Results 

Validation Stages Mean squared and regression results  

 Mean Squared Error  Regression 

Training 1.04672 0.96837 

Validation 0.91482 0.93833 

Testing 0.84314 0.92921 

 

In this section in validating the network is to get a regression 

plot which measure the connection between outputs and 

targets. If the training was perfect, the network outputs and the 

targets would be exactly equal, but the relationship is rarely 

perfect in practice. Fig. 9 illustrates the regression results. The 

following regression plots display the network outputs with 

reference to targets for training, validation, and test sets. For 

the best result, the data should be making a 45-degree line, 

where the framework output data are equal to the target. In this 

case, the fit is reasonably good for all data sets, with R values 

in each case is 0.92 or above of it.  

 

 
Fig. 9    Results of Regression 

 

The above figure shows the result of the training, validation, 

and testing data. The dashed line in each plot addresses the 

perfect correlation between the difference of result and outputs 

which leads to targets. The solid line addresses the best fit 

linear regression line among outputs and targets. The R value 

is a sign of the connection between the outputs and targets. If R 

= 1, this means that there's a linear relationship between 

outputs and targets. If R is on the brink of zero, then there's no 

linear relationship between outputs and targets. In this 

instance, the training data indicates an honest fit. The 

validation and test results also show R values that are greater 

than 0.9. 

 

4.3 Error Autocorrelation 

 

Fig. 10 demonstrates the results of error autocorrelation 

function. It determines how the forecast errors are interrelated 

in time. For a perfect forecast model, there must just be one 

non-zero value of the error autocorrelation function, and it 

should happen at zero lag. This implies that the forecast errors 

were entirely uncorrelated with one another. If there was 

substantial relationship in the forecast errors, then it would 

improve the forecast possibly by increasing the number of 

delays in the tapped delay lines. For the case, the error 

autocorrelation function falls roughly within the 100% 

confidence limits of zero, but only for the one at zero lag, so 

the model is satisfactory. 



  

 
Fig. 10     Results of Autocorrelation 

 

4.4 Validation 

 

The proposed APFxLMS algorithm has been validated against 

Guo et. al. [24]. For this aim the following methods are 

applied. 

i. Proposed APFxLMS  

ii. FELMS algorithm by Guo et. al. [24] 

Figure 14, 15, and Figure 16 show the results of 

i. APFxLMS algorithm with α = -0.4 and µ = 0.04, 

ii. FELMS algorithm with µ = -0.04 

 

The parameter α and step size in the first case are determined 
so that the error should be small via trial and error approach. In 

the same way, step size and its sign are experimentally 

determined. However, in case of APFxLMS the step size µ = 

0.04, while in case of FELMS if the step size µ = 0.04 is used it 

results in divergence. Therefore, the step size of FELMS 

algorithm must be reduced to µ = -0.04.  

 

The convergence speed of all these methods may appear in the 

tap weight trajectory in Fig. 11. These plots of the filter 

coefficients show the stability of the proposed algorithm. The 

algorithm of Guo takes much oscillating trajectory to 

converge, meanwhile the proposed system takes faster and 

relatively straight way to the optimal position. Finally, the 

proposed algorithm obtains lower finite residual noise power 

(RNP) lower than -20dB, on the other hand, Guo algorithm 

only attains -18.9 dB at the final update shown in Fig. 12. 

From these results it is observed that the algorithm Guo et al. 

have slow residual noise decreasing speed, whereas the 

proposed method in this study present reasonably fast 

convergence speed, which is generally the outcome in ANC. 

 

  
(a) (b) 

Fig. 11 Tap Weight Trajectory, by (a) APFxLMS algorithm (α 
= -0.4 and µ = 0.04), (b) FELMS algorithm (µ = -0.04) 

  

(a) (b) 

Fig. 12   RNP by (a) APFxLMS algorithm (α = -0.4 and µ = 

0.04), (b) FELMS algorithm (µ = -0.04) 

 

Table 2 shows the comparison of the proposed APFxLMS 

with ANCs in terms of Reduction Noise Power Level (RNPL) 

and Noise Reduction Speed (NRS) [12]. 

 

Table 2     Validation of the proposed APFxLMS  

 

 RNPL(db) NRS 

APFxLMS -20.0 47 

FELMS -18.9 48 

 

5. CONCLUSION 

 

There are a few noteworthy favorable circumstances related to 

the proposed methodology. Right off the bat, it gives a 

methodical strategy to ANC framework plan by a first-order 

all-pass filter reference LMS algorithm rather than estimation 

of the secondary path. The primary advantage to utilize the 

all-pass filter is that it changes the phase shift only while the 

magnitude of the response is not changing. It likewise does not 

need to execute Hilbert transform for changing over the 

algorithm into the frequency domain. Besides, it tends to be 

effectively executed progressively computerized separating 

activity. This gives a moderately straightforward approach to 

execute the technique in real time applications. The utilization 

of this examination set up an association with genuine issues. 

At last, a solitary parameter α can control stage an incentive 
for guaranteeing assembly conditions. 
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